NHSG Key stage 3: Unit Overview for P1.1 Particle model | Scheme of Learning | P1.1 Particle Model | | | | | |--------------------|--|--|--|--|--| | Learning outcomes | Subject Content Knowledge and understating of: How our ideas about atoms have changed over time. Why solids, liquids, and gases have different densities (how heavy something is for its size). How to use the formula: Density = Weight ÷ Space it takes up and understand that weight stays the same even if the shape or state changes. Skills: Recognising different models of atoms. Explaining why some materials are heavier for their size. Doing simple calculations using the density formula. | | | | | | Key questions | "What do people think everything is made from?" By the end of this unit, students should be able to explain this clearly to someone else. | | | | | | Knowledge | Key Ideas and Skills: Different models of atoms Size of atoms What density means Why different materials have different densities How to calculate density Important Words to Learn: Atom, Nucleus, Protons, Neutrons, Electrons, Electron shells Order of magnitude, Density, Weight, Volume | | | | | | Ongoing Assessment | During Lessons (Ongoing Checks): • Quick starter tasks to review past lessons • Whiteboard activities to check understanding | | | | | | | Teachers asking questions to everyone (not just hands up) Common mistakes addressed, like: Thinking particles grow when heated (they don't – they just move apart) Confusing atoms, molecules, and subatomic particles Struggling with unit conversions or imagining how particles are arranged | | | | |-------------------------|---|--|--|--| | Key Assessment | A short multiple-choice quiz in the middle of the topic. 6 mark questions which are teacher assessed to look for greater depth of understanding. Topic tests which aim to provide specific targets for improvement. | | | | | Content | Builds on earlier science lessons Helps prepare for future topics in physics Vocabulary is taught clearly and used often | | | | | Careers | Connects to careers in science and philosophy | | | | | Diversity and Inclusion | Shows how different cultures have contributed to our understanding of matter (e.g. Ancient Greece, India) | | | | | Support | Revision guides, online resources, and booklets | | | | | Challenge | Why did Rutherford need a vacuum for his experiment? Why use a microscope to see the screen? How did scientists know particles bounced back? | | | |