NHSG Key stage 3: Unit Overview for P5.3 Wave interaction | Scheme of Learning | P5.3 Wave interaction | | | | | |--------------------|---|--|--|--|--| | | Subject Content | | | | | | Learning outcomes | Knowledge and Understanding: - How light reflects, refracts, and passes through different materials. - The difference between convex and concave lenses, and how they affect light rays. - How we see colour and why objects appear differently under coloured light. - The difference between specular (mirror-like) and diffuse (scattered) reflection. | | | | | | | Skills: - Drawing and interpreting ray diagrams Understanding how filters and lenses affect light Using scientific vocabulary like: reflection, refraction, absorption, transmission, convex, concave, and filters Explaining real-life examples, like why a red shirt looks black under blue light. | | | | | | Key questions | "What colour does a red shirt look under blue light – and why?" By the and of the unit students should be able to confidently explain this using scientific reasoning. | | | | | | Knowledge | By the end of the unit, students should be able to confidently explain this using scientific reasoning. Key Ideas and Skills: - Different types of wave interactions - Properties of waves (reflection, refraction, diffraction) - Uses of wave interactions in everyday life Important Words to Learn: - Waves, Reflection, Refraction, Diffraction, Interference | | | | | | Ongoing Assessment | During Lessons (Ongoing Checks): Quick starter tasks to review past lessons Whiteboard activities to check understanding Teachers asking questions to everyone (not just hands up) Common mistakes addressed, like: Primary colours in science vs. art: Students often confuse the primary colours used in science (red, green, blue) with those in art (red, yellow, blue). | | | | | | | Filters and colour: A common misunderstanding is that filters add colour to light. In reality, filters
remove certain wavelengths, allowing only specific colours to pass through. | | | | | |-------------------------|---|--|--|--|--| | Key Assessment | A short multiple-choice quiz in the middle of the topic. 6 mark questions which are teacher assessed to look for greater depth of understanding. Topic tests which aim to provide specific targets for improvement. | | | | | | Content | Builds on earlier science lessons Helps prepare for future topics in physics Vocabulary is taught clearly and used often | | | | | | Careers | Connects to careers in science and technology | | | | | | Diversity and Inclusion | Shows how different cultures have contributed to our understanding of wave interactions | | | | | | Support | Revision guides, online resources, and booklets Talk about how light and colour appear in everyday life (e.g. rainbows, sunglasses, mirrors). Ask them to explain what they've learned using real-world examples. | | | | | | Challenge | - How do waves interact with the world around us? - How are wave interactions used in technology? - How do scientists measure wave interactions? | | | | |